Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

5-tert-Butyl-2-methoxy-1,3-dinitrobenzene

Yu-Yuan Ye

College of Pharmaceutical and Chemical Engineering, Taizhou University, Linhai 317000, People's Republic of China Correspondence e-mail: yeyy@zj.com

Received 17 April 2007; accepted 2 May 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.051; wR factor = 0.162; data-to-parameter ratio = 18.7.

The title compound, C₁₁H₁₄N₂O₅, was prepared by the reaction of HNO₃ and 1-tert-butyl-4-methoxybenzene. The atoms of the benzene ring, the nitro N atoms, the methoxy O atom and the tert-butyl tertiary C atom are coplanar; the dihedral angles between this plane and the NO₂ planes are 50.41 (18) and 20.2 (3)°. There are weak $C-H\cdots O$ intermolecular interactions.

Related literature

For related literature, see: Kwiatkowski et al. (1997).

Experimental

Crystal data C11H14N2O5 $M_r = 254.24$

Monoclinic, C2/ca = 21.7800 (18) Å b = 12.3756 (10) Åc = 10.0521 (8) Å $\beta = 110.686 \ (3)^{\circ}$ V = 2534.8 (4) Å³ Z = 8

Data collection

Enraf–Nonius CAD-4	3063 independent reflections
diffractometer	2411 reflections with $I > 2\sigma(I)$
Absorption correction: multi-scan	$R_{\rm int} = 0.024$
(ABSCOR; Higashi, 1995)	3 standard reflections
$T_{\rm min} = 0.956, \ T_{\rm max} = 0.979$	frequency: 60 min
16809 measured reflections	intensity decay: 0.3%

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.051$	164 parameters
$wR(F^2) = 0.162$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.53 \ {\rm e} \ {\rm \AA}^{-3}$
3063 reflections	$\Delta \rho_{\rm min} = -0.34 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C9-H9A\cdots O5^{i}$	0.96	2.67	3.626 (4)	175
$C9-H9C\cdots O4^{ii}$	0.96	2.67	3.610 (3)	167
6	. 1 1	- 3. (2)		

Symmetry codes: (i) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) $-x + \frac{1}{2}$, $-y + \frac{1}{2}$, -z + 1.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2103).

References

- Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Kwiatkowski, S., Pupek, K., Lawrence, B. L. & Lawrence, L. J. (1997). US Patent No. 5663441.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

Mo $K\alpha$ radiation $\mu = 0.11 \text{ mm}^{-1}$

 $0.30 \times 0.25 \times 0.20$ mm

T = 298 (2) K

supplementary materials

Acta Cryst. (2007). E63, o2865 [doi:10.1107/S1600536807021666]

5-tert-Butyl-2-methoxy-1,3-dinitrobenzene

Y.-Y. Ye

Comment

5-tert-Butyl-2-methoxy-1,3-dinitrobenzene, (I), is an important intermediate in synthesis of Butralin which is a herbicide (Kwiatkowski *et al.*, 1997) and was obtained by the reaction of HNO₃ and 1-tert-butyl-4-methoxybenzene, as colourless crystals suitable for X-ray structure analysis.

The molecular structure of (I) is illustrated in Fig. 1. Atoms C1, C2, C3, C4, C5, C6, C7, N1, N2 and O1 are coplanar, the largest deviation being 0.0578 (13) Å for C3. The dihedral angles between the C1—C7/N1/N2/O1 plane and the O2/O3/N1 and O4/O5/N2 planes are 50.41 (18) and 20.21 (29)^o, respectively.

Experimental

The title compound was prepared from HNO₃ and 1-tert-butyl-4-methoxybenzene, according to the procedure of Kwiatkowski *et al.* (1997).

Refinement

H atoms were added at calculated positions and refined using a riding model. H atoms were given isotropic displacement parameters equal to 1.2 (or 1.5 for methyl H atoms) times the equivalent isotropic displacement parameters of their parent atoms and C—H distances were restrained to 0.93 Å for those bonded to phenyl ring, 0.96 Å for those bonded to methyl.

Figures

Fig. 1. The structure of (I) shown with the 30% probability displacement ellipsoids.

5-tert-Butyl-2-methoxy-1,3-dinitrobenzene

Crystal data	
$C_{11}H_{14}N_2O_5$	$F_{000} = 1072$
$M_r = 254.24$	$D_{\rm x} = 1.332 {\rm ~Mg~m}^{-3}$
Monoclinic, C2/c	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å

supplementary materials

Hall symbol: -C 2yc
<i>a</i> = 21.7800 (18) Å
<i>b</i> = 12.3756 (10) Å
c = 10.0521 (8) Å
$\beta = 110.686 \ (3)^{\circ}$
$V = 2534.8 (4) \text{ Å}^3$
Z = 8

Data collection

Enraf–Nonius CAD-4 diffractometer	$R_{\rm int} = 0.024$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 28.2^{\circ}$
Monochromator: graphite	$\theta_{\min} = 1.9^{\circ}$
T = 298(2) K	$h = -28 \rightarrow 27$
$\omega/2-\theta$ scans	$k = -16 \rightarrow 16$
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)	$l = -12 \rightarrow 13$
$T_{\min} = 0.956, \ T_{\max} = 0.979$	3 standard reflections
16809 measured reflections	every 60 min
3063 independent reflections	intensity decay: 0.3%
2411 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	H-atom parameters constrained
Least-squares matrix: full	$w = 1/[\sigma^2(F_0^2) + (0.0801P)^2 + 1.6942P]$ where $P = (F_0^2 + 2F_c^2)/3$
$R[F^2 > 2\sigma(F^2)] = 0.051$	$(\Delta/\sigma)_{max} < 0.001$
$wR(F^2) = 0.162$	$\Delta \rho_{max} = 0.53 \text{ e} \text{ Å}^{-3}$
<i>S</i> = 1.03	$\Delta \rho_{min} = -0.34 \text{ e } \text{\AA}^{-3}$
3063 reflections	Extinction correction: SHELXL97, $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
164 parameters	Extinction coefficient: 0.0056 (9)
Primary atom site location: structure-invariant direct	

methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring

Special details

sites

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Cell parameters from 25 reflections

 $\theta = 10.0 - 14.8^{\circ}$ $\mu = 0.11 \text{ mm}^{-1}$ T = 298 (2) KPrism, colourless $0.30 \times 0.25 \times 0.20 \text{ mm}$ **Refinement**. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C9	0.41557 (11)	0.0960 (2)	0.7960 (2)	0.0732 (6)
H9A	0.4019	0.0243	0.8093	0.110*
H9B	0.4614	0.0955	0.8091	0.110*
H9C	0.3907	0.1204	0.7016	0.110*
C10	0.42528 (11)	0.2866 (2)	0.8843 (3)	0.0831 (7)
H10A	0.4001	0.3116	0.7904	0.125*
H10B	0.4710	0.2866	0.8967	0.125*
H10C	0.4181	0.3337	0.9533	0.125*
O4	0.19977 (9)	0.33505 (15)	0.55134 (17)	0.0828 (5)
O5	0.12433 (9)	0.3218 (2)	0.6367 (3)	0.1169 (8)
C11	0.08562 (11)	0.0967 (2)	0.6871 (3)	0.0795 (7)
H11A	0.0417	0.0987	0.6877	0.119*
H11B	0.0997	0.0230	0.6896	0.119*
H11C	0.0868	0.1308	0.6022	0.119*
C1	0.19258 (7)	0.15762 (12)	0.82339 (16)	0.0407 (3)
01	0.12844 (6)	0.15281 (11)	0.80883 (14)	0.0561 (4)
C4	0.33051 (7)	0.16977 (12)	0.88046 (15)	0.0382 (3)
C3	0.30526 (8)	0.10427 (12)	0.96067 (15)	0.0406 (3)
H3	0.3336	0.0645	1.0359	0.049*
C2	0.23849 (8)	0.09782 (12)	0.92962 (16)	0.0408 (3)
C5	0.28576 (8)	0.22938 (12)	0.77189 (16)	0.0410 (3)
H5	0.3010	0.2733	0.7152	0.049*
N1	0.21527 (8)	0.02213 (12)	1.01381 (17)	0.0525 (4)
C6	0.21916 (8)	0.22504 (12)	0.74620 (15)	0.0414 (4)
O3	0.24253 (9)	0.02423 (13)	1.14221 (15)	0.0738 (5)
N2	0.17748 (8)	0.29694 (13)	0.63483 (17)	0.0568 (4)
C7	0.40392 (8)	0.17216 (13)	0.90428 (17)	0.0444 (4)
O2	0.17149 (9)	-0.04078 (14)	0.95125 (19)	0.0815 (5)
C8	0.44524 (9)	0.1347 (2)	1.0536 (2)	0.0700 (6)
H8A	0.4333	0.0620	1.0677	0.105*
H8B	0.4376	0.1814	1.1224	0.105*
H8C	0.4909	0.1369	1.0648	0.105*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C9	0.0524 (11)	0.1024 (17)	0.0703 (13)	0.0098 (11)	0.0283 (10)	-0.0150 (12)
C10	0.0492 (12)	0.0739 (14)	0.1155 (19)	-0.0102 (10)	0.0157 (12)	0.0228 (13)
O4	0.0792 (11)	0.0996 (12)	0.0663 (9)	0.0261 (9)	0.0217 (8)	0.0410 (9)

supplementary materials

05	0.0628 (11)	0.1358 (18)	0.1556 (19)	0.0521 (11)	0.0429 (12)	0.0776 (15)
C11	0.0450 (11)	0.0950 (17)	0.0886 (16)	-0.0054 (10)	0.0113 (10)	-0.0152 (13)
C1	0.0381 (8)	0.0423 (8)	0.0438 (8)	0.0050 (6)	0.0172 (6)	-0.0052 (6)
01	0.0383 (6)	0.0667 (8)	0.0674 (8)	0.0048 (5)	0.0239 (6)	-0.0072 (6)
C4	0.0383 (8)	0.0390 (7)	0.0372 (7)	0.0044 (6)	0.0133 (6)	-0.0008 (5)
C3	0.0428 (8)	0.0411 (7)	0.0360 (7)	0.0048 (6)	0.0115 (6)	0.0023 (6)
C2	0.0456 (8)	0.0400 (7)	0.0403 (7)	0.0008 (6)	0.0194 (6)	-0.0007 (6)
C5	0.0427 (8)	0.0416 (8)	0.0400 (8)	0.0039 (6)	0.0164 (6)	0.0039 (6)
N1	0.0566 (9)	0.0500 (8)	0.0576 (9)	0.0001 (7)	0.0284 (7)	0.0061 (6)
C6	0.0420 (8)	0.0419 (8)	0.0385 (7)	0.0110 (6)	0.0120 (6)	0.0030 (6)
03	0.1015 (12)	0.0722 (9)	0.0528 (8)	-0.0061 (8)	0.0336 (8)	0.0140 (7)
N2	0.0479 (9)	0.0588 (9)	0.0581 (9)	0.0158 (7)	0.0116 (7)	0.0138 (7)
C7	0.0361 (8)	0.0512 (9)	0.0446 (8)	0.0028 (6)	0.0127 (6)	0.0025 (7)
O2	0.0743 (10)	0.0813 (11)	0.0888 (11)	-0.0284 (8)	0.0287 (9)	0.0089 (8)
C8	0.0400 (9)	0.1079 (17)	0.0564 (11)	0.0121 (10)	0.0099 (8)	0.0133 (11)

Geometric parameters (Å, °)

С9—С7	1.527 (3)	C1—C6	1.397 (2)
С9—Н9А	0.9600	C4—C3	1.387 (2)
С9—Н9В	0.9600	C4—C5	1.391 (2)
С9—Н9С	0.9600	C4—C7	1.531 (2)
C10—C7	1.526 (3)	C3—C2	1.378 (2)
C10—H10A	0.9600	С3—Н3	0.9300
C10—H10B	0.9600	C2—N1	1.467 (2)
C10—H10C	0.9600	C5—C6	1.382 (2)
O4—N2	1.204 (2)	С5—Н5	0.9300
O5—N2	1.204 (2)	N1—O3	1.216 (2)
C11—O1	1.429 (3)	N1—O2	1.219 (2)
C11—H11A	0.9600	C6—N2	1.467 (2)
C11—H11B	0.9600	С7—С8	1.525 (2)
C11—H11C	0.9600	C8—H8A	0.9600
C1—O1	1.3535 (19)	C8—H8B	0.9600
C1—C2	1.391 (2)	C8—H8C	0.9600
С7—С9—Н9А	109.5	C3—C2—C1	123.94 (14)
С7—С9—Н9В	109.5	C3—C2—N1	117.24 (14)
Н9А—С9—Н9В	109.5	C1—C2—N1	118.81 (14)
С7—С9—Н9С	109.5	C6—C5—C4	121.65 (14)
Н9А—С9—Н9С	109.5	С6—С5—Н5	119.2
Н9В—С9—Н9С	109.5	C4—C5—H5	119.2
C7—C10—H10A	109.5	O3—N1—O2	124.12 (16)
C7—C10—H10B	109.5	O3—N1—C2	117.40 (15)
H10A—C10—H10B	109.5	O2—N1—C2	118.44 (15)
C7—C10—H10C	109.5	C5—C6—C1	122.22 (14)
H10A—C10—H10C	109.5	C5—C6—N2	116.42 (14)
H10B-C10-H10C	109.5	C1—C6—N2	121.35 (14)
O1—C11—H11A	109.5	O5—N2—O4	122.47 (17)
O1—C11—H11B	109.5	O5—N2—C6	118.85 (17)
H11A—C11—H11B	109.5	O4—N2—C6	118.45 (15)

01—C11—H11C	109.5	C8—C7—C10	108.10 (18)
H11A—C11—H11C	109.5	C8—C7—C9	108.96 (17)
H11B—C11—H11C	109.5	C10—C7—C9	110.11 (18)
O1—C1—C2	119.63 (14)	C8—C7—C4	111.64 (14)
O1—C1—C6	125.50 (14)	C10—C7—C4	110.33 (14)
C2—C1—C6	114.70 (14)	C9—C7—C4	107.69 (14)
C1	116.77 (14)	C7—C8—H8A	109.5
C3—C4—C5	117.03 (14)	C7—C8—H8B	109.5
C3—C4—C7	121.81 (13)	H8A—C8—H8B	109.5
C5—C4—C7	121.08 (13)	C7—C8—H8C	109.5
C2—C3—C4	120.38 (14)	H8A—C8—H8C	109.5
С2—С3—Н3	119.8	H8B—C8—H8C	109.5
С4—С3—Н3	119.8		
C2-C1-O1-C11	-108.9 (2)	C4—C5—C6—C1	-2.7 (2)
C6-C1-O1-C11	76.2 (2)	C4—C5—C6—N2	176.15 (14)
C5—C4—C3—C2	1.6 (2)	O1—C1—C6—C5	176.70 (14)
C7—C4—C3—C2	-175.09 (14)	C2—C1—C6—C5	1.5 (2)
C4—C3—C2—C1	-2.8 (2)	O1—C1—C6—N2	-2.0 (2)
C4—C3—C2—N1	176.56 (13)	C2-C1-C6-N2	-177.23 (14)
O1—C1—C2—C3	-174.29 (14)	C5—C6—N2—O5	-157.4 (2)
C6—C1—C2—C3	1.2 (2)	C1—C6—N2—O5	21.5 (3)
O1-C1-C2-N1	6.3 (2)	C5—C6—N2—O4	17.3 (2)
C6-C1-C2-N1	-178.18 (13)	C1—C6—N2—O4	-163.92 (18)
C3—C4—C5—C6	1.0 (2)	C3—C4—C7—C8	-22.9 (2)
C7—C4—C5—C6	177.75 (14)	C5—C4—C7—C8	160.45 (16)
C3—C2—N1—O3	47.5 (2)	C3—C4—C7—C10	-143.18 (18)
C1—C2—N1—O3	-133.07 (17)	C5-C4-C7-C10	40.2 (2)
C3-C2-N1-O2	-130.37 (18)	C3—C4—C7—C9	96.62 (18)
C1—C2—N1—O2	49.1 (2)	C5—C4—C7—C9	-79.98 (19)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\dots}\!A$
C9—H9A···O5 ⁱ	0.96	2.67	3.626 (4)	175
C9—H9C····O4 ⁱⁱ	0.96	2.67	3.610 (3)	167
Symmetry codes: (i) $-x+1/2$, $y-1/2$, $-z+3/2$; (ii) $-x+1/2$, $-y+1/2$, $-z+1$.				

